SIGHTS. A sight for shooting may be defined as an apparatus for determining the point of impact of a pro-jectile, in popular language, for "aiming" or "laying." In its simplest form it is scarcely recognizable as a sight. When an expert cricketer throws the ball straight to the wicket the eye and the hand assume that relative position which experience has taught to be correct, and the eye may be said to lay the hand on the wicket by means of the in-tervening muscles, which therefore constitute the sight. The next step towards accuracy is seen in the ordinary shot-gun, where the eye is placed over and behind the centre of the breech, and sees that a bead placed above the centre of the muzzle is in a direct line with the desired point of impact. If we add a notch at the centre of the breech to fix the eye more accurately, we shall have the hind-sight, the fore-sight, and the object brought into line, when the gun is correctly laid.
This would constitute a perfect direct mechanical sight if we could assume (1) that the projectile was not subject to gravity; (2) that it had no tendency to deviate if passing through a calm atmosphere; (3) that the object aimed at was stationary ; (4) that the weapon discharged was stationary; (5) that the atmosphere was still.
(1) The first condition is never realized : the projectile begins to drop towards the earth the moment it leaves the gun, and therefore to make it strike at a given level its first direction must be above this level. Hence the hind-sight must be raised to make the necessary correction, and the angle between the axis of the piece and the straight line connecting the elevated hind-sight with the fore-sight and object is called the "angle of elevation." Supposing the projectile to move in vacuo and to drop simply under the action of gravity, the calculation of the amount of eleva- tion to be given for any range at any velocity would be easily made, but the resistance of the air renders the problem an exceedingly complicated and difficult one (see GUNNERY), and only approximate solutions have as yet been discovered. Next, supposing the hind-sight to be correctly elevated, it is evidently necessary to keep it up- right ; deviation to the right will cause the projectile to strike to the right of the object and deviation to the left to strike to the left of it. The amount of error is given by the equation d=r tan 6 tan e, where d = error in direction, r = range, 9 = angle made by plane of elevation with the perpendicular, and c = angle of elevation. The rifleman should study to keep the hind-sight as upright as possible, and indeed little error is likely to occur with a good shot from this cause. But the case is very different with a gun mounted on an uneven or mov-ing platform, and many devices have been resorted to for automatically overcoming the difficulty. They all, however, belong to either the spirit-level or the pendulum type.
(2) Secondly, the projectile deviates of its own accord from the vertical plane. If it is unrifled, its imperfections of manufacture cause errors which may be in any direc- tion, and which, therefore, cannot be compensated by any method of sighting. If it is rifled, the spin given to it renders these imperfections of little consequence, but, on the other hand, confers a constant tendency to deviation. If we lay a gun on the face of a clock, and the rifling causes a point on the surface of the shot to turn in the same direction as the hands, the shot will deviate to the right, contrariwise to the left. The cause and extent of this motion have never been thoroughly worked out. It appears to arise from the circumstance that the axis round which the shot rotates points always above the trajectory, since the principle of least resistance causes the direction of the axis to follow tardily the ever-changing curve; hence the pressure of the air, which of course acts in the direction of the trajectory, is greater on the lower than on the upper surface, and the unequal friction thereby set up causes the shot, as it were, to roll sideways; here also the principle of least resistance turns the axis slightly out of the vertical plane of fire towards the actual direc- tion of the projectile. The path is doubly curved,first, downwards by gravity, secondly, sideways by the rotation ; the latter curve, seen in plan, is nearly a parabola. In order to correct this tendency of rifled projectiles to shoot round the corner, as it may be said, the hind-sight is in- clined at an angle with the vertical, so that the more it is raised to give elevation the greater becomes the correc- tion, which assumes the form of a curve not very dis- similar to that due to rotation. The amount of error is practically determined on the firing ground, and the proper angle for the sight is given by the formula tan B = i-. r sin e
(3) Every one who shoots birds on the wing is acquainted with the difficulties appertaining to the non-fulfilment of the third condition. The expert game-shot aims ahead of the object more or less, according to his judgment of the relative velocities of the projectile and the target and of the distance of the latter. Practice makes this compara-tively easy at the short ranges of ordinary sport; but in the case of a heavy fort gun firing at a vessel under full steam 3000 yards off, it becomes evident that considerable allowance must be made. Put the mean horizontal velo-city of the shot over a 3000 yards range at 1000 foot-seconds, the time of flight will be 9 seconds; if the ship is running past at the rate of 20 foot-seconds it will have traversed 180 feet during the shot's flight, and it will be necessary to direct the gun so much ahead of the desired p'oint of impact. The angle of divergence in the case just given is tan-1'02; and, supposing the horizontal velocity of the projectile to be constant throughout its flight, this angle would be correct for a ship running at a speed of 20 foot-seconds whatever the range.
(4) The fourth condition is rarely met with except on board ship, and it is evident that it obeys the same laws and is subject to the same kind of correction as the third. The correcting angle, however, is here given by the ship's speed across the line of fire and the starting velocity of the projectile.
(5) The fifth source of error differs from the others in being variable and uncontrollable. A gust of wind may spoil the best shot; and, though it is possible in practice to allow for deviation due to a steady breeze, yet the force and even the direction of the moving air differ so fre-quently at different parts of the trajectory that it has hitherto been found impossible to devise any satisfactory correction beyond that obtainable from knowledge of the point of impact of a previous shot. The effect of wind on direction may be calculated from the formula
_n, -nf, _ j ^w i fAtf Wt sin 0,-1
D = W< sin 0-990-p logi + 1 K
Aj ° I 500 w )
where D = deflexion in feet, W = velocity of wind in feet per second, t = time of flight in seconds, ^ = angle between direction of wind and line of fire, A = area of longitudinal section of shot in square feet, w = weight of shot in pounds, g = force of gravity. This formula assumes that the wind steadily carries the shot sideways without changing the parallelism of its axis, an assumption not greatly in error with heavy projectiles having the centre of gravity nearly coincident with the centre of figure. The effect of wind on range may be arrived at by adding or subtracting the velocity of the air, resolved in the direction of the object, to or from the horizontal velocity of the projectile and calculating by the tables (see GUNNERY) the loss or gain due to the increased or diminished resistance.
The accompanying diagrams (figs. 1, 2) represent what are called "speed-sights" in the royal navy, as applied to a 4-inch breech-loading gun. The gun is shown elevated at 8° for a range of 4600 yards. The hind or "tangent" sight is sloped sideways at an angle of 1° 30' to correct the constant tendency of the projectile to deviate to the right. The sight is raised in the socket till the lowest visible graduation on the bar reads the required range on the face towards the breech and the elevation in degrees on the face towards the muzzle. A crosshead carries a leaf, which is traversed to the right or left by a double-threaded screw; this leaf is provided with a fine wire strung horizontally between two uprights ; hence this form of sight is sometimes known as the H sight. The crosshead is gra-duated with two scales, one on the muzzle-face reading minutes of deflexion for giving any desired correction for wind or uneven plat-form, the other on the breech-face for allowing for the speed of the enemy in knots across the line of fire. The fore-sight is fixed in the gun, and cannot be raised or lowered. It has a crosshead provided with a traversing leaf, which carries a round bead on a thin support. The crosshead is graduated to allow for the speed of the firing vessel across the line of fire. In practice the gunner makes all these adjustments as nearly as he can judge, then takes up his position about 4 feet behind the breech of the gun, holding the firing lanyard taut; when the object and the bead of the fore-sight appear to be on the centre of the wire across the H of the hind-sight he fires.
The forms of sights preferred by experts for accurate laying are extremely varied, and nothing but practice can determine the most suitable to individual eyesight. Where the eye can be brought close to the hind-sight, one of the best systems is that adopted for British field-guns, where a fine peep-hole constitutes the hind-sight, and the fore- sight consists of diagonal cross-wires; the first rapid or rough adjustment of the gun is made with the aid of a V- shaped notch on the hind-sight and an acorn point on the fore-sight. Some prefer pointers for the fore-sight, either O-shaped, so that the object appears between the cusps of the Othis is the French method _or placed diagon- ally like cross-wires with the intersec- tion removed. Sil- vered vertical lines are preferred by many good shots. If the gun is mount- ed in a fixed posi- tion, say on a siege platform, and, if the relative positions of the target and Fig- 2.
some Other obj ect
Speed-sights used in the British navy.
are known, it may be found convenient to lay the gun on the target by directing the sights at the other object. This is principally done in the case of howitzers dropping shells at high elevation into a work. They fire over a pro-tecting bank and are laid by reversed sights from the muzzle backwards at a steeple, a pole, or other convenient object.
To secure greater accuracy than can be attained by the eye, telescopes are resorted to. It is obviously easy to apply to a match rifle a telescope with sufficient strength to resist the jar of firing, and to provide it with the neces-sary fittings for elevation, deflexion, &c.; but with ordnance the shock is much greater, and the telescope has to be removed before firing. This renders it difficult to secure a truly accurate attachment; but probably the immediate future will witness a sufficiently satisfactory solution of the problem as regards guns on firm platforms. Efforts have been made from time to time to overcome the necessity for extreme accuracy due to the short bearing of the telescope by bringing the fore-sight into play; this can be done either by great powers of adjustment of focus, so as to view first the fore-sight and then the target, or by adding a half-obj ect lens, and so getting simultaneous images of fore-sight and target.
The application of electricity to the laying and firing of heavy guns has caused a remarkable development of the systems of sighting introduced recently into the forts which protect the shores of the United Kingdom. Sup-pose a battery of guns to command a channel, and that it is desired to concentrate their fire on a hostile vessel endeavouring to run past. Each detachment lays its gun both for elevation and direction in accordance with the figures which appear on a dial in the emplacement. Each dial is worked by electricity from an observing station away from the smoke and noise of the fort; as the hostile vessel approaches the observing officer follows its course on a chart. The observing station is placed at a considerable height above the water-line, so that a vertical base of calculation is obtained. Hence the angle of depression given by the telescope when pointing at the object indicates the range, and the direction of the telescope indicates the line of fire; these indications are automatically corrected for the positions of the guns. In practice the officer follows the ship's course, signals to the battery the line and distance of a point a little ahead of the vessel, and receives a signal from the battery that the guns are laid and ready. He then fires electrically as the ship is coming into the expected position. (E. M.)
The above article was written by: Col. Earley Maitland, R.A., Superintendant, Royal Gun Factory, Woolwich.